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ABSTRACT 
 
 A gas turbine thermodynamic cycle was computation-
ally simulated and probabilistically evaluated in view of 
the several uncertainties in the performance parameters, 
which are indices of gas turbine health. Cumulative distri-
bution functions and sensitivity factors were computed for 
the overall thermal efficiency and net specific power out-
put due to the thermodynamic random variables. These 
results can be used to quickly identify the most critical 
design variables in order to optimize the design, enhance 
performance, increase system availability and make it cost 
effective. The analysis leads to the selection of the appro-
priate measurements to be used in the gas turbine health 
determination and to the identification of both the most 
critical measurements and parameters. Probabilistic analy-
sis aims at unifying and improving the control and health 
monitoring of gas turbine aero-engines by increasing the 
quality and quantity of information available about the 
engine�s health and performance. 
 Conventional engineering design methods are deter-
ministic. The components of a machine are considered as 
ideal systems and parameter optimizations provide single 
point estimates of the system response. In reality, many 
engineering systems are stochastic where a probability 
assessment of the results is required. Probabilistic engi-
neering design analysis assumes probability distributions 
of design parameters, instead of mean values only. This 
enables the designer to design for a specific reliability and 
hence maximize safety, quality and cost. The approaches 
for incorporating probabilistic effects in design include 
the use of factors of safety, the use of the worst case  
design and the use of   probabilistic design. Utilizing the 

uncertainties in the estimations, deterministic engineering 
design uses factors of safety to assure that the nominal 
operational condition does not come too close to the point 
where the system will fail.  The approximation of mini-
mum properties and maximum loads known as the abso-
lute worst case gives information about this critical point. 
This approach limits the optimization capability of a sys-
tem and fails to provide important information about the 
system lifetime.  
 The design procedures of the advanced aerospace ve-
hicles must account for uncertainties calculating the risk 
or reliability. These calculations will involve probabilistic 
analysis. When compared with traditional factor of safety 
methods, probabilistic methods require additional inputs 
but provide higher quality outputs. The uncertain or ran-
dom variables are assumed to have a probability density 
function. The output will be a probability density function 
for the response quantities.  
 A robust design is one that has been created with a 
system of design tools that reduce product or process vari-
ability while guiding the performance toward an optimal 
setting. Robustness means achieving excellent perform-
ance under a wide range of operating conditions. All engi-
neering systems function reasonably well under ideal 
conditions, but robust designs continue to function well 
when the conditions are non-ideal. Analytical robust de-
sign attempts to determine the values of design parameters 
which maximize the reliability of the product without 
tightening the material or environmental tolerances. Prob-
abilistic design and robust design go hand in hand. In or-
der to determine the domains of stability, the system has 
to be analyzed probabilistically.    

*ASME Member. 
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INTRODUCTION 
 Gas turbine aero-engines are used in all the new com-
mercial aircraft and most business aircraft. Due to their 
capital cost and numbers installed, notably in the fleets of 
aircraft operated by the armed services and commercial 
airlines, there is considerable pressure to reduce the cost 
of ownership incurred by the operator. In the civil sector, 
this pressure is currently increasing with the rising popu-
larity of the concept of �power by the hour� engine sales 
contract in which the operator is sold a fleet of engines but 
no spares. The operator pays the engine supplier a prede-
termined engine-operating rate for maintenance. Both 
owner and supplier share a common interest in minimizing 
repair and overhaul cost. Effective engine health monitor-
ing techniques can reduce the cost of ownership by setting 
appropriate levels of routine maintenance and by locating 
and assessing the significance of specific problems with 
an engine.  The emphasis in the gas turbine engine indus-
try today is reduced cost in procurement and operation. 
Any unscheduled maintenance or outages will cause addi-
tional costs and lost revenues. In many critical applica-
tions, standby gas turbines are used for emergency 
conditions, thus resulting in a more cost intensive opera-
tion. The optimum use of machine availability, manage-
ment and maintenance can reduce financial losses due to 
gas turbine outages. Madej et al. [1] discussed the moni-
toring of service delivery system and diagnostics of gas 
turbine engines. An updated schedule of gas turbine oper-
ating state will be required to diagnose the causes of per-
formance degradation.  
 The gas path analysis can be used to determine the gas 
turbine operating state. This method uses field measure-
ments to estimate the characteristic performance parame-
ters by means of thermodynamic cycle analysis [2�5]. 
Measurements are taken of pressures and temperatures at 
various stations along the gas flow paths, together with 
other engine parameters such as the spool speeds. These 
measurements are used in conjunction with physical laws 
and the known characteristics of the engine�s components 
such as the efficiencies of turbines and compressors. The 
determination of the operating state using this approach 
may include uncertainties in the accuracy of thermody-
namic measurements and a priori selection of the geomet-
ric and performance characteristic parameters. The main 
benefit of such schemes to the owner/operator would be 
that any sudden deterioration in the engine�s health pa-
rameters could be flagged almost immediately and correc-
tive action taken before significant financial loss was 
incurred.  
 With the increase in gas turbine engine complexity and 
performance over the past 50 years, structural engineers 
have created an array of safety nets to ensure against 
component failures in turbine engines. In order to reduce 
what is now considered to be excessive conservatism and 
yet maintain the same adequate margins of safety, there is 
a pressing need to explore methods of incorporating prob-
abilistic design procedures into engine development.  

Probabilistic methods combine and prioritize the  
statistical distributions of each design variable, generate 
an interactive distribution and offer the designer a quanti-
fied relationship between robustness, endurance and per-
formance.  
 Conventional engineering design methods are deter-
ministic. Machines and their components are considered 
as ideal systems and parameter optimizations provide sin-
gle point estimates of the system behavior or response. 
Probabilistic engineering design uses probability distribu-
tions of design parameters instead of mean or nominal 
values only. This will enable a designer for a specific reli-
ability and hence maximize safety, quality and economy. 
A probabilistic design system was developed by Fox [6] at 
Pratt & Whitney for the purpose of integrating determinis-
tic design methods with probabilistic design techniques. 
Here, two different approaches were used for estimating 
uncertainty. A Monte Carlo approach was used on design 
codes that were judged to run relatively quickly. For more 
computationally intensive design codes, a second order 
response surface model in conjunction with Box-Behnken 
design experiments was used and then a Monte Carlo 
simulation was executed. Several researchers at NASA 
Glenn Research Center have applied the probabilistic de-
sign approaches to turbine engines and related systems. 
Chamis [7] developed a Probabilistic Structural Analysis 
Method (PSAM) using different distributions such as the 
Weibull, normal, log-normal, etc. to describe the uncer-
tainties in the structural and load parameters or primitive 
variables. Nagpal, Rubinstein and Chamis [8] presented a 
probabilistic study of turbopump blades of the Space 
Shuttle Main Engine (SSME). They found that random 
variations or uncertainties in geometry have statistically 
significant influence on the response variable and random 
variations in material properties have statistically insig-
nificant effects. Chamis [9] summarized the usefulness 
and importance of the probabilistic approach, especially 
for turbopumps. Gorla et al. [10] computationally simu-
lated and probabilistically evaluated a combustor liner in 
view of several uncertainties in the aerodynamic, struc-
tural, material and thermal variables that govern the com-
bustor liner.  
 To cost effectively accomplish the design task, we 
need to formally quantify the effect of uncertainties (vari-
ables) in the design. Probabilistic design is one effective 
method to formally quantify the effect of uncertainties. In 
the present paper, a probabilistic analysis is presented for 
the influence of measurement accuracy and a priori fixed 
parameter variations on the random variables for gas tur-
bine system health determination. 

 

PROBABILITY THEORY 
 Let X1, X2, �., Xn be a set of random variables de-
fined on a (discrete) probability space Ω . The probability 
that the events X1= x1 X1, X2= x2, ..., and Xn= Xn happen 
concurrently, is denoted by  

)221121 nnn xX,....,xX,xP(X)x,....,x,f(x ====  for 
the set of desired solutions Ω⊆A . If the function 
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),....,,( 21 nxxxf  is discrete, it is called the joint prob-
ability mass function of X1, X2,..., Xn and has the follow-
ing properties.   

0 ≤ f(x1, x2, .�, xn) ≤ 1 
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If f(x1, x2, .�, xn) is continuous it is called joint probabil-
ity density function of X1, X2,..., Xn and has the following 
properties: 
 

0 ≤ f(x1, x2, �, xn) 
                                
 1,, 2121 =∫ ∫

Ω
nn ...dxdx)dxx...x,f(x...  (2) 

 
P ),..,,[( 21 nXXX ∈A]   

 ∫ ∫ Ω⊆=
A

nn A...dxdx)dxx...x,f(x ,,,.. 2121   

 
If the lower bound of A, the set of desired solutions, is 
equal to the infimum of Ω for all Xi, i.e., if A = [infi (Ω), 
ai], for all i = 1,2,�, n, a function F(a1,a2,�,an)can be 
defined, such that: 
 
F(a1,a2,�.,an) = ])[( 21 AX,..,X,XP n ∈  
 

 ∑∑
∈
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n
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xxxf ),...,,(... 21
),...,,( 21
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 Ω⊆A (f is discrete)      (3) 
 
F(a1,a2,�.,an) = ])[( 21 AX,..,X,XP n ∈  
 

 = ∫ ∫ Ω⊆
A

nn Adxdxdxxxxf ,...),...,,(.. 2121  

 

 (f  is continuous)     (4) 
 
F is called the joint cumulative probability distribution 
function. For Ω = Rn   and a continuous function f : 
 
F(a1,a2,�.,an) =  X,...,X,(XP n )[ 21 ∈((-∞,-∞,�,-∞), 

(a1,a2,�.,an))] = ∫ ∫
∞− ∞−

na a

nn dxdxdxxxxf
1

...),...,,(.. 2121   (5) 

The common notation F(a1,a2,...,an) 
=   aX,...,aX,aXP nn )( 2211 ≤≤≤ will be used subse-
quently also. 
 The univariate probability function fXi for each crite-
rion Xi, obtained from the traditional probabilistic design 
process, can also be generated with the joint probability 
function f. fxi is called marginal probability mass or den-
sity function of Xi and is defined by: 
 

1fx = ∑ ∑
∈),...,(

2
2

),...,(...
nxx R

nxxf     (f  is discrete) (6) 

              

1fx  = ∫∫ nn
R

dxdxxxf ...),...,(... 22  (f is continuous)  (7) 

The joint probability function, fXY (x, y), creates the sur-
face of a probability �hump� in the x-y-f-space, character-
ized by rings of constant probabilities. The distribution 
curves over the x- and y-axis are the aforementioned mar-
ginal probability functions fX(x) and fy(y), respectively. 
The last necessary concept to mention here for the devel-
opment of a joint probabilistic formulation is the concept 
dependence of criteria. Two random variables X and Y are 
said to be independent, if fXY(x, y) = fX(x). fY(y) otherwise 
X and Y are said to be dependent. This dependence is a 
mathematical notion and should not be confused with 
�casual dependence�. For here on, mathematical depend-
ence will be referred to as correlation. Correlation is 
measured by the covariance of two criteria, X and Y, de-
fined by 
 
 Cov(X,Y) = E[X,Y] � E[X]E[Y]. (8) 
 
It is more convenient, however, to use a covariance nor-
malized by the standard deviations, σX and σY, for both 
criteria, called correlation coefficient. 
 

 ρ = 
YX

YX,
σσ

)(Cov  (9) 

 
The correlation coefficient is defined over the interval  
[�1,1], indicating strongly positively correlated criteria at 
values close to 1 and strongly negatively correlated crite-
ria at values close to �1. The criteria are independent, if  
ρ = 0. In aerospace systems design ρ can be quite difficult 
to calculate by Eq. (9). It is much more effective to view 
the correlation coefficient differently for calculation pur-
poses. Jointly collected data from a probabilistic or any 
other analysis can be thought of as vectors of numbers. 
The correlation coefficient measures the orthogonality, 
i.e., independence, of both vectors. ρ is simply the cosine 
of the angle between the two criterion vectors, indicating 
their alignment. For ρ = 1, vectors are parallel and point  
in same direction, for ρ = �1, vectors are parallel and  
point in opposite direction. For ρ = 0, vectors are

]
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orthogonal and the criteria are independent. The correla-
tion coefficient plays a significant role in the formulation 
of joint probability distribution models as described in the 
next section.  
 
Probability Functions 
 Attention is now directed to the implementation of this 
probabilistic formulation in the design process. The nec-
essary transition from the mathematical formulation above 
to a probabilistic model that yields the information rele-
vant for multi-variate decision making is described in this 
section. There are two alternatives for this task. 
 
Joint Probability Model 
 The first joint probability density function introduced 
here is an analytical probability model for criteria whose 
univariate distributions and their corresponding means and 
standard deviations are known. All necessary information 
for the model can be generated by the traditional probabil-
istic design process, using its output of univariate criterion 
distributions. A particular model for two criteria with 
normal distributions, represented by Eq. (10), has been 
introduced by Garvey and Tuab. Garvey further generated 
models for two criteria with combinations of normal and 
lognormal distributions, which are summarized in 
Ref. [11]. 
 

)10(]})())((2

)[(
22

1exp{
12

1),(

2

2
22

Y

Y

Y

Y

X

X

X

x

YX

yyx

µxyxf XY

σ
µ

σ
µ

σ
µρ

σρρσσπ

−+−−−

−
−−

=

 

 
Note that the only information needed for the Joint Prob-
ability Model consists of the means µX and µY, the stan-
dard deviations σX and σY, and the correlation coefficient 
ρ for the criteria X and Y. The model variables, x and y, 
are defined over the interval of all possible criterion val-
ues. The advantage of this model is the limited informa-
tion needed, which makes it very flexible for use and 
application. For example, if only expert knowledge and no 
simulation/modeling is available in the early stages of 
design, educated guesses for the means, standard devia-
tions, and the correlation coefficient can be used to exe-
cute the joint probability model. It also lends itself to use 
in combination with increasingly important fast probabil-
ity integration (FPI) techniques. 
 
Implementation of Probabilistic Procedure Using FPI 
 FPI is a probabilistic analysis tool that implements a 
variety of methods for probabilistic analysis. The proce-
dure follows the steps given below: 
 

1. Identify the independent and uncorrelated design 
variables with uncertainties. 

2. Quantify the uncertainties of these design vari-
ables with probability distributions based on  
expert opinion elicitation, historical data or 
benchmark testing. 

3. It is required that there is a response function that 
defines the relationship between the response and 
the independent variables. 

4. The FPI uses the responses generated to compute 
the cumulative distribution functions (CDF)/ 
probability density functions (PDF) and the cor-
responding sensitivities of the response. 

 
 Several methods are available in the FPI to compute a 
probabilistic distribution. In addition to obtaining the 
CDF/PDF of the response, the FPI provides additional 
information regarding the sensitivity of the response with 
respect to the primitive variables. They provide valuable 
information in controlling the scatter of the response vari-
able. The random primitive variable with the highest sen-
sitivity factor will yield the biggest payoff in controlling 
the scatter in that particular response variable. Such in-
formation is very useful to the test/design engineer in de-
signing or interpreting the measured data. 
 

DISCUSSION OF RESULTS 
 The probabilistic analysis of gas turbine field perform-
ance due to the uncertainties was applied to a 10 MW two 
shaft heavy duty industrial gas turbine with variable power 
turbine nozzle. Figure 1 shows the layout of the gas tur-
bine system. The thermodynamic random variables and 
their respective values used in this analysis are shown in 
Table 1. The random variables are labeled in Table 2. All 
the random variables were assumed to be independent. A 
scatter of ± 10% was specified for all the variables.  
Normal distribution was assumed for all random variable 
scatters.  
 The overall thermal efficiency of the gas turbine sys-
tem was determined from a control volume analysis using 
the first and second laws of thermodynamics. The cumula-
tive distribution functions (CDF) and the sensitivity fac-
tors were evaluated for the overall thermal efficiency 
response. CDF for the overall thermal efficiency are  
 

Figure 1   Layout of the gas turbine system.
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  Table 1.Random Variables 

Random Variable Mean 
Value 

Compressor inlet pressure (P1) 101.3 kPa 
Compressor inlet temperature (T1) 288 K 
Compressor exit (P2) 1439.9 kPa 
Mass flow rate of fuel (Mf) 0.645 kg/s 
Compressor turbine (CGT) exit pressure (P4) 306.0 kPa 
Adiabatic efficiency of compressor  0.85 
Adiabatic efficiency of compressor turbine 0.90 
Adiabatic efficiency of power turbine 0.86 

 
 

Table 2.Random Variable Labels 
Label Description 

P1 Compressor inlet pressure  
T1 Compressor inlet temperature  
P2 Compressor exit  
T3 Inlet temperature to the compressor turbine 
P4 Compressor turbine (CGT) exit pressure 
COMPEFF Adiabatic efficiency of compressor 
TURB1EFF Adiabatic efficiency of compressor turbine 
TURB2EFF Adiabatic efficiency of power turbine 
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Figure 2   Cumulative probability of overall thermal efficiency.
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shown in Fig. 2. The sensitivity factors for the overall 
thermal efficiency are plotted in Figs. 3�5. From these 
figures, we observe that the inlet pressure and temperature 
of the compressor, exit pressure of the compressor, inlet 
temperature to the compressor gas turbine and adiabatic 
efficiencies of the compressor turbine and power turbine 
have a lot of influence on the overall thermal efficiency. 
These thermodynamic random variables represent the 
most important indices for the gas turbine health determi-
nation. The adiabatic efficiencies of the compressor and 
turbines in the system are measures of irreversibilities or 
increase of entropy. The sensitivity factor for the com-
pressor adiabatic efficiency is much smaller than those for 
the compressor turbine and power turbine. The sensitivity 
factors due to the adiabatic efficiencies of the compressor 
turbine and power turbine influence the most in the deter-
mination of the overall thermal efficiency of the system.  
 

Figure 3   Sensitivity factors versus random variables.
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Figure 4   Sensitivity factors versus random variables.
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Figure 5   Sensitivity factors versus random variables.
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 Figure 6 shows the CDF for the net specific output of 
the gas turbine system. The sensitivity factors for the net 
specific output are plotted in Figs. 7�9. The sensitivity 
factor due to the compressor turbine inlet temperature 
influences the most in the evaluation of the net specific 
power output in the cycle. 
 These results can be used to further optimize the de-
sign for cost effectiveness and also to assist in the health 
determination of the system. The prediction of degrada-
tion of system performance can be achieved from the re-
sults obtained. 
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Figure 6   Cumulative probability of net specific power output.
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Figure 7   Sensitivity factors versus random variables.
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Figure 8   Sensitivity factors versus random variables.
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CONCLUDING REMARKS 
 In this paper, a non-deterministic, non-traditional 
method has been developed to support reliability-based 
aerospace design. The revolutionary part of the proposed 
work is the probabilistic evaluation of the thermodynamic 
analysis. The nontraditional part of the proposed work is 
the identification of criteria for using computational  
accuracy. Probabilistic methods were applied to the  
 

Figure 9   Sensitivity factors versus random variables.
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thermodynamic analysis of a gas turbine system. The in-
terconnection between the thermodynamic analysis and 
NESTEM codes was necessary to compute the probabilis-
tic evaluation of a gas turbine field performance. Overall 
thermal efficiency and net specific power output of the gas 
turbine plant was evaluated using the thermodynamic ran-
dom variables. Cumulative distribution functions and sen-
sitivity factors were computed for the overall thermal 
efficiency and net specific power output due to the ther-
modynamic random variables. Evaluating probability of 
risk and sensitivity factors will enable the identification of 
the most critical design variables in order to optimize the 
design, make it cost effective and assist in the health de-
termination of the system. 
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